Intelligent Sprayer Development for Nursery and Orchard Spray Applications

Principal Investigators:
USDA-ARS: Heping Zhu, Richard Derksen, Michael Reding, Chris Ranger, Charles Krause, Jim Locke
The Ohio State University: Erdal Ozkan, Luis Canas, Randy Zondag, Stan Ernst
Oregon State University: Robin Rosetta
University of Tennessee: Amy Fulcher

Background: Current application technology for floral, nursery, and other specialty crop production wastes significant amounts of pesticides. During past 10 years, we demonstrated that optimum spray coverage, independent of spray volume, could reduce pesticide use by over 50% and result in significant production cost savings. However, achieving optimum spray coverage required spray applicators to execute complex guidelines for a particular sprayer in order to reach the spray quality needed for effective pest and disease control. To simplify this procedure, a new spraying system with intelligent technologies was invented.

Objectives: Develop advanced and affordable spray systems that employ intelligent technology to automatically match spray outputs to crop structures during pesticide applications.

Precision Sprayer Development

Variable-rate air-assisted sprayer

Touch screen and control box

Laser scanning sensor

Tree images from the laser sensor

Research Significance: Critical intelligent technology was developed to increase application efficiencies and reduce uncertainties in spray deposition uniformity, off-target loss and calibration for current pesticide sprayers. We achieved real cost benefits with new pesticide application strategies for tree crop producers, consumers and the environment. Four of five
sprayer prototypes built at a cost of $21,000 for each are currently being tested for efficacy, reliability and durability in commercial nurseries in Ohio, Oregon and Tennessee. Commercial production of this technology can significantly reduce costs.

New Spraying System: A laser-guided variable-rate air-assisted sprayer was developed to improve pesticide application efficiencies for ornamental nursery and fruit tree industries. The sprayer integrates a high speed laser scanning system to a custom-designed sensor-signal analyzer and variable-rate controller, variable-rate nozzles and a multi-channel air-assisted delivery system. This unique precision sprayer can visualize the presence, size, shape, and foliage density of target trees and apply only the necessary amount of pesticide.

Pest control efficacy and reliability tests in Ohio, Oregon and Tennessee

Hans Nelson and Sons Nursery, Oregon
Willoway Nurseries, Ohio
Klyn Nurseries, Ohio
Herman Losely & Son Nurseries, Ohio
Sunleaf Nursery, Ohio
Walker Nursery, Tennessee

Benefits: Controlled spray outputs to match canopy structures in real time are now realistic with intelligent sprayer capabilities. Field experiments demonstrated that the intelligent sprayer, compared to conventional sprayers, reduced variations in spray deposition due to changes in tree structure and increased consistency of spray deposition uniformity on targets at different growth stages. The pest control efficacies of the new sprayer are comparable to those of conventional
sprayers, while the new sprayer reduces average pesticide use by 47% to 70%, for an annual cost savings of $140 to $280 per acre. Additional tests in an apple orchard have shown that the new sprayer reduces spray loss beyond the tree canopy by 40% to 87%, reduces airborne spray drift by up to 87%, and reduces spray loss on the ground by 68% to 93%.

For more information, please contact Dr. Heping Zhu at heping.zhu@ars.usda.gov, USDA-ARS Application Technology Research Unit, 1680 Madison Ave., Wooster, OH 44691.